
Title: ‘Sound-Extraction: A Python package for subsamplingTitle: ‘Sound-Extraction: A Python package for subsampling
audio files’audio files’

Authors:Authors:

Name: Prayag N. ShahName: Prayag N. Shah

Name: Douglas P. HynesName: Douglas P. Hynes

Date: 26 July 2023Date: 26 July 2023

SummarySummary

Ecologists use digital audio recordings of ambient sounds to monitor changes in habitats,Ecologists use digital audio recordings of ambient sounds to monitor changes in habitats,

biodiversity, and ecosystem health. Recording devices can produce massive data sets consistingbiodiversity, and ecosystem health. Recording devices can produce massive data sets consisting

of multitudes of long duration audio files. Machine learning tools can aid in the anlaysis of this bigof multitudes of long duration audio files. Machine learning tools can aid in the anlaysis of this big

data, but the ground truthing of sounds (e.g., validating species-specific vocalizations) must bedata, but the ground truthing of sounds (e.g., validating species-specific vocalizations) must be

done by listening to, and visualizing, a much smaller fraction of audio. The done by listening to, and visualizing, a much smaller fraction of audio. The Sound-ExtractionSound-Extraction

Python package enables user-friendly batch subsampling of long duration audio files (Figure 1).Python package enables user-friendly batch subsampling of long duration audio files (Figure 1).

The program can segment (aka “clip”) and extract (aka “copy”) new recordings of a definedThe program can segment (aka “clip”) and extract (aka “copy”) new recordings of a defined

duration, using simple command-line arguments. Options include stratified sampling, withduration, using simple command-line arguments. Options include stratified sampling, with

subgroups that can be defined by the user, or by the subgroups that can be defined by the user, or by the recording_times_generatorrecording_times_generator program, program,

which extracts audio bounded by start and end dates, a given location, and the correspondingwhich extracts audio bounded by start and end dates, a given location, and the corresponding

sunlight phase. The package supports both WAV and FLAC formats. Functionality insunlight phase. The package supports both WAV and FLAC formats. Functionality in

 Sound_ExtractionSound_Extraction and and recording_times_generatorrecording_times_generator is primarily handled using two key open is primarily handled using two key open

source python packages: source python packages: soundfilesoundfile (Bechtold, 2013) and (Bechtold, 2013) and astralastral (Kennedy, 2009). (Kennedy, 2009).

Figure 1Figure 1 . The general workflow of the Python program . The general workflow of the Python program Sound-ExtractionSound-Extraction ..

Statement of needStatement of need
The availability of low-cost hardware and innovative software has facilitated long-term fieldThe availability of low-cost hardware and innovative software has facilitated long-term field

deployments of acoustic devices for ecological research and monitoring (Morgan and Braasch,deployments of acoustic devices for ecological research and monitoring (Morgan and Braasch,

2021; Roe et al. 2021). Ecologists can extract ecologically significant information from the2021; Roe et al. 2021). Ecologists can extract ecologically significant information from the

resulting–often massive–volumes of audio data produced by recording devices (often referred toresulting–often massive–volumes of audio data produced by recording devices (often referred to

as “autonomous recording units”, or ARUs), through the computation of acoustic indices (Camposas “autonomous recording units”, or ARUs), through the computation of acoustic indices (Campos

et al., 2021) or by discriminating features with machine learning techniques (Prince et al., 2019),et al., 2021) or by discriminating features with machine learning techniques (Prince et al., 2019),

among others. But teasing out relavant biological information is a laborious process, requiringamong others. But teasing out relavant biological information is a laborious process, requiring

many, often repetitive, tasks that can hinder analyses. For example, many algorithim-aidedmany, often repetitive, tasks that can hinder analyses. For example, many algorithim-aided

analsyes still require expert validation of the sound content itself. In this case, the acousticanalsyes still require expert validation of the sound content itself. In this case, the acoustic

analyst must navigate through a myraid of recordings, creating sound clips and sprectrograms toanalyst must navigate through a myraid of recordings, creating sound clips and sprectrograms to

manually skim, scan, and listen to (Wimmer et al., 2013; Budka et al., 2023). Preceding validation,manually skim, scan, and listen to (Wimmer et al., 2013; Budka et al., 2023). Preceding validation,

audio recordings must often be sampled, which includes serveral intermediate tasks, such as theaudio recordings must often be sampled, which includes serveral intermediate tasks, such as the

running of sampling scripts to assign recordings to various subgroupings. Recordings are thenrunning of sampling scripts to assign recordings to various subgroupings. Recordings are then

selected, segmented according the sampling regime, and finally extracted (i.e., copied andselected, segmented according the sampling regime, and finally extracted (i.e., copied and

moved) with standardized durations to new locations.moved) with standardized durations to new locations.

The computational limits of software and hardware presents other challenges. In certainThe computational limits of software and hardware presents other challenges. In certain

bioacoustic tools, analyses may be optimzed with audio of specific durations (e.g., SonoBat;bioacoustic tools, analyses may be optimzed with audio of specific durations (e.g., SonoBat;

Szewczak, 2010), hence presenting the need for one to segment those audio files that do not fitSzewczak, 2010), hence presenting the need for one to segment those audio files that do not fit

within a computational optimum. within a computational optimum. Sound-ExtractionSound-Extraction enables one to slice long-duration audio enables one to slice long-duration audio

recordings into shorter durations of uniform length, while parsing and preserving the datetimes inrecordings into shorter durations of uniform length, while parsing and preserving the datetimes in

file names.file names.

To help facilitate manual processing tasks, and comparisons of audio data sets with standardizedTo help facilitate manual processing tasks, and comparisons of audio data sets with standardized

samples, we present samples, we present Sound-ExtractionSound-Extraction , an audio extraction program that enables users to, an audio extraction program that enables users to

sample, clip, copy, and move recordings to some pre-defined folder structure. Written in Python,sample, clip, copy, and move recordings to some pre-defined folder structure. Written in Python,

users may define and import lists of subgroups and their corresponding audio files, the latter ofusers may define and import lists of subgroups and their corresponding audio files, the latter of

which are then clipped and copied in batches on the basis of their datetimes and subgroupings.which are then clipped and copied in batches on the basis of their datetimes and subgroupings.

The program utilizes basic data structures like dictionaries, strings and lists, and supports thoseThe program utilizes basic data structures like dictionaries, strings and lists, and supports those

working with FLAC or WAV audio formats, and frequencies up to 256,000 hertz. working with FLAC or WAV audio formats, and frequencies up to 256,000 hertz. Sound-Sound-

ExtractionExtraction efficently manages datetime objects; both sample and input recording datetimes are efficently manages datetime objects; both sample and input recording datetimes are

stored in data dictionaries, with the original recordings serving as keys and the correspondingstored in data dictionaries, with the original recordings serving as keys and the corresponding

sample files as values in the sample files as values in the Sound-ExtractionSound-Extraction tool. In this way, sample files are assigned tool. In this way, sample files are assigned

correctly to the original audio files, and filtered (i.e., sampled) files are passed through thecorrectly to the original audio files, and filtered (i.e., sampled) files are passed through the

 soundfilesoundfile library for the final extraction. The library for the final extraction. The soundfilesoundfile library enables the storage of audio library enables the storage of audio

data as NumPy arrays (Harris et al., 2020), facilitating seamless extraction of audio clipsdata as NumPy arrays (Harris et al., 2020), facilitating seamless extraction of audio clips

according to user-defined subgroups, or with groups created via theaccording to user-defined subgroups, or with groups created via the recording_time_generatorrecording_time_generator ,,

which samples recordings based on the sunrise and sunset times of given location and date.which samples recordings based on the sunrise and sunset times of given location and date.

While existing public libraries like FFmpeg (Bellard, 2006) and SoX (Norskog, 1991) can segmentWhile existing public libraries like FFmpeg (Bellard, 2006) and SoX (Norskog, 1991) can segment

and copy recordings, and copy recordings, Sound-ExtractionSound-Extraction will appeal to those with limited programming will appeal to those with limited programming

experience. Hence, the purpose of experience. Hence, the purpose of Sound-ExtractionSound-Extraction is to address this gap by offering a Python is to address this gap by offering a Python

package that implements customized batched sampling and segmenting of audio.package that implements customized batched sampling and segmenting of audio.

Usage ScenariosUsage Scenarios

1. Generate sample times based on sunlight phase using start and end1. Generate sample times based on sunlight phase using start and end
dates, and a location:dates, and a location:

pip install sound-extractionpip install sound-extraction

recording_times_generatorrecording_times_generator

--start_date --start_date "2021-07-01""2021-07-01"

--end_date --end_date "2021-07-05""2021-07-05"

--latitude --latitude "42.12547""42.12547"

--longitude --longitude "-50.55426""-50.55426"

--timezone --timezone "Canada/Atlantic""Canada/Atlantic"

--sample_size --sample_size 11

The The recording_times_generatorrecording_times_generator works by passing datetimes (from 1-5 July 2021, in this case) works by passing datetimes (from 1-5 July 2021, in this case)

through through astralastral , and produces a sample recording time every half an hour (n = 48 maximum, and produces a sample recording time every half an hour (n = 48 maximum

possible samples per day; Table 1) relative to sunlight phase.possible samples per day; Table 1) relative to sunlight phase.

Table 1Table 1 : Rules defining the creation of the daily sample recording time list from which: Rules defining the creation of the daily sample recording time list from which

audio extractions occur.audio extractions occur.

This dataframe of datetimes represents a pool of samples that are implicitly passed to the This dataframe of datetimes represents a pool of samples that are implicitly passed to the nn

 sample_sizesample_size argument, which in turn takes a argument, which in turn takes a nn random sample (without replacement) from six random sample (without replacement) from six

categories: daytime, dusk, nocturnal, and three morning times–early, mid and late sunrise (Tablecategories: daytime, dusk, nocturnal, and three morning times–early, mid and late sunrise (Table

2).2).

Table 2Table 2 : Rules defining the sunlight phase based categorization of extracted recordings.: Rules defining the sunlight phase based categorization of extracted recordings.

Categories can be edited by manipulating the assigned time chunks and time ranges in the sourceCategories can be edited by manipulating the assigned time chunks and time ranges in the source

code.code.

2. Provide 2. Provide Sound-ExtractionSound-Extraction with the list of recordings and with the list of recordings and
subgroupingssubgroupings

sound-extractionsound-extraction

--csv_file_path --csv_file_path "G:/acousticData/SandPond192450/SandPond192450_RecordingDraw.c"G:/acousticData/SandPond192450/SandPond192450_RecordingDraw.cs

--root_directory --root_directory "G:/acousticData/FrontierLabs/SandPond192450/UneditedRecordin"G:/acousticData/FrontierLabs/SandPond192450/UneditedRecording

--output_directory --output_directory "G:/acousticData/FrontierLabs/SandPond192450/ExtractedRecor"G:/acousticData/FrontierLabs/SandPond192450/ExtractedRecord

--site_name --site_name "SandPond192450_""SandPond192450_"

--extension --extension ".wav"".wav"

Shorter recordings can now be extracted by passing the generated list of recording times (eitherShorter recordings can now be extracted by passing the generated list of recording times (either

created via created via recording_times_generatorrecording_times_generator , or by supplying a list of your own), to the, or by supplying a list of your own), to the

 sound_extractionsound_extraction command. The command is designed to recursively search directories for command. The command is designed to recursively search directories for

audio files with filenames in the datetime format (“yyyyMMddTHHmmss”, e.g.,audio files with filenames in the datetime format (“yyyyMMddTHHmmss”, e.g.,

20220611T202300.wav or 20220611T202300.flac). To facilitate the standardized renaming of20220611T202300.wav or 20220611T202300.flac). To facilitate the standardized renaming of

recording names, we employed the recording names, we employed the Ecoacoutsics Metadata UtilityEcoacoutsics Metadata Utility (Truskinger et al., 2023). (Truskinger et al., 2023).

The list of times to be extracted, within the CSV, must follow the naming convention such asThe list of times to be extracted, within the CSV, must follow the naming convention such as

“20220611_202300.wav” or “20220611_202300.flac”, and fall under the heading “20220611_202300.wav” or “20220611_202300.flac”, and fall under the heading sampleFilesampleFile ..

Recordings are then extracted and written to eponymous folders. If a user supplies their ownRecordings are then extracted and written to eponymous folders. If a user supplies their own

subgroupings (i.e., category names), the program creates folders with those names instead. Insubgroupings (i.e., category names), the program creates folders with those names instead. In

cases where the user does not populate the cases where the user does not populate the categorycategory field of the input CSV, the program will field of the input CSV, the program will

simply extract the audio recordings and store them in the current directory from where thesimply extract the audio recordings and store them in the current directory from where the

program is being run.program is being run.

3. Audio slicing for bioacoustic analysis3. Audio slicing for bioacoustic analysis

sound-extractionsound-extraction

--root_directory --root_directory "G:/acousticData/FrontierLabs/SandPond192450/UneditedRecordin"G:/acousticData/FrontierLabs/SandPond192450/UneditedRecording

--output_directory --output_directory "G:/acousticData/FrontierLabs/SandPond192450/ExtractedRecor"G:/acousticData/FrontierLabs/SandPond192450/ExtractedRecord

----sliceslice 1515

In some bioacoustic analyses, large audio recordings can present computational challenges. InIn some bioacoustic analyses, large audio recordings can present computational challenges. In

this example, the this example, the Sound-ExtractionSound-Extraction program is used to batch segment long-duration recordings program is used to batch segment long-duration recordings

into shorter, contiguous, clips. The option into shorter, contiguous, clips. The option --slice--slice defines the output duration, in seconds, of defines the output duration, in seconds, of

each segmented audio file. The function segments recordings but maintains the temporaleach segmented audio file. The function segments recordings but maintains the temporal

continuity of the data, by parsing and writing corresponding datetimes (or timestamps) into thecontinuity of the data, by parsing and writing corresponding datetimes (or timestamps) into the

segmented recordings. For example, a 3600 second-long recording (e.g.,segmented recordings. For example, a 3600 second-long recording (e.g.,

“20230622_020000.wav”), sliced by 15 seconds, would produce 240 15-second long recordings“20230622_020000.wav”), sliced by 15 seconds, would produce 240 15-second long recordings

with file names as follows: “20230622_020000.wav”, “20230622_020015.wav”,with file names as follows: “20230622_020000.wav”, “20230622_020015.wav”,

“20230622_020030.wav”, and so on.“20230622_020030.wav”, and so on.

AcknowledgementsAcknowledgements

The authors are grateful for funding provided by Environment and Climate Change Canada.The authors are grateful for funding provided by Environment and Climate Change Canada.

Thanks to Greg Campbell and Peter Thomas for providing sampling scripts, written in the RThanks to Greg Campbell and Peter Thomas for providing sampling scripts, written in the R

programming language, that inspired the creation of programming language, that inspired the creation of Sound-ExtractionSound-Extraction . We also extend a warm. We also extend a warm

thank you to Harsil Patel and Shivam Patel for reviewing the code.thank you to Harsil Patel and Shivam Patel for reviewing the code.

ReferencesReferences

Bechtold, B. (2013). SoundFile can read and write sound files and manipulate their data.Bechtold, B. (2013). SoundFile can read and write sound files and manipulate their data.

https://pysoundfile.readthedocs.io/en/latest/https://pysoundfile.readthedocs.io/en/latest/

Bellard, F. (2006). A complete, cross-platform solution to record, convert and stream audio andBellard, F. (2006). A complete, cross-platform solution to record, convert and stream audio and

video. video. https://ffmpeg.org/https://ffmpeg.org/

Bishop, S. (2004). Current and historical timezone database for Python.Bishop, S. (2004). Current and historical timezone database for Python.

https://pypi.org/project/pytz/https://pypi.org/project/pytz/

Budka, M., Sokołowska E., Muszyńska, A., & Staniewicz, A. (2023). Acoustic indices estimateBudka, M., Sokołowska E., Muszyńska, A., & Staniewicz, A. (2023). Acoustic indices estimate

breeding bird species richness with daily and seasonally variable effectiveness in lowlandbreeding bird species richness with daily and seasonally variable effectiveness in lowland

temperate Białowieża forest. Ecological Indicators, 148, 110027.temperate Białowieża forest. Ecological Indicators, 148, 110027.

https://doi.org/10.1016/j.ecolind.2023.110027https://doi.org/10.1016/j.ecolind.2023.110027..

Campos, I. B., Fewster, R., Truskinger, A., Towsey, M., Roe, P., Filho, D. V., Lee, W., & Gaskett, A.Campos, I. B., Fewster, R., Truskinger, A., Towsey, M., Roe, P., Filho, D. V., Lee, W., & Gaskett, A.

(2021). Assessing the potential of acoustic indices for protected area monitoring in the Serra do(2021). Assessing the potential of acoustic indices for protected area monitoring in the Serra do

Cipó National Park, Brazil. Ecological Indicators, 120, 106953.Cipó National Park, Brazil. Ecological Indicators, 120, 106953.

https://doi.org/10.1016/j.ecolind.2020.106953https://doi.org/10.1016/j.ecolind.2020.106953

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H.,Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H.,

Brett, M., Haldane, A., del Rıo, J. F., Wiebe, M., Peterson, P., & Oliphant, T. E. (2020). ArrayBrett, M., Haldane, A., del Rıo, J. F., Wiebe, M., Peterson, P., & Oliphant, T. E. (2020). Array

programming with NumPy. Nature, 585(7825), 357–362.programming with NumPy. Nature, 585(7825), 357–362.

https://doi.org/10.1038/s41586-020-2649-2https://doi.org/10.1038/s41586-020-2649-2

Kennedy, S. (2009). Package for calculating the times of various aspects of the sun and moon.Kennedy, S. (2009). Package for calculating the times of various aspects of the sun and moon.

https://astral.readthedocs.io/en/latest/https://astral.readthedocs.io/en/latest/

Morgan, M. M., & Braasch, J. (2021). Long-term deep learning-facilitated environmental acousticMorgan, M. M., & Braasch, J. (2021). Long-term deep learning-facilitated environmental acoustic

monitoring in the Capital Region of New York State. Ecological Informatics, 61, 101242.monitoring in the Capital Region of New York State. Ecological Informatics, 61, 101242.

https://doi.org/10.1016/j.ecoinf.2021.101242https://doi.org/10.1016/j.ecoinf.2021.101242..

Norskog, L. (1991). SoX - Sound eXchange, the Swiss Army knife of audio manipulation.Norskog, L. (1991). SoX - Sound eXchange, the Swiss Army knife of audio manipulation.

http://sox.sourceforge.net/http://sox.sourceforge.net/

Prince, P., Hill, A., Piña Covarrubias, E., Doncaster, P., Snaddon, J. L., & Rogers, A. (2019).Prince, P., Hill, A., Piña Covarrubias, E., Doncaster, P., Snaddon, J. L., & Rogers, A. (2019).

Deploying Acoustic Detection Algorithms on Low-Cost, Open-Source Acoustic Sensors forDeploying Acoustic Detection Algorithms on Low-Cost, Open-Source Acoustic Sensors for

Environmental Monitoring. Sensors (Basel, Switzerland), 19(3), 553.Environmental Monitoring. Sensors (Basel, Switzerland), 19(3), 553.

https://doi.org/10.3390/s19030553https://doi.org/10.3390/s19030553

Roe, P., Eichinski, P., Fuller, R. A., McDonald, P. G., Schwarzkopf, L., Towsey, M., Truskinger, A.,Roe, P., Eichinski, P., Fuller, R. A., McDonald, P. G., Schwarzkopf, L., Towsey, M., Truskinger, A.,

Tucker, D., & Watson, D. M. (2021). The Australian Acoustic Observatory. Methods in Ecology andTucker, D., & Watson, D. M. (2021). The Australian Acoustic Observatory. Methods in Ecology and

Evolution, 12, 1802– 1808. Evolution, 12, 1802– 1808. https://doi.org/10.1111/2041-210X.13660https://doi.org/10.1111/2041-210X.13660

Szewczak, J. M. (2023). The benefits of full-spectrum data for analyzing bat echolocation calls.Szewczak, J. M. (2023). The benefits of full-spectrum data for analyzing bat echolocation calls.

http://www.sonobat.comhttp://www.sonobat.com

Truskinger, A., MacAskill, N., Mercer, J., & Scarpelli, M. D. A. (2023). QutEcoacoustics/emu:Truskinger, A., MacAskill, N., Mercer, J., & Scarpelli, M. D. A. (2023). QutEcoacoustics/emu:

Support for AudioMoth CONFIG.TXT files improvedSupport for AudioMoth CONFIG.TXT files improved

https://github.com/QutEcoacoustics/emuhttps://github.com/QutEcoacoustics/emu

Wimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acousticWimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic

recordings to determine bird species richness. Ecological Applications, 23(6), 1419–1428.recordings to determine bird species richness. Ecological Applications, 23(6), 1419–1428.

http://www.jstor.org/stable/23596835![]http://www.jstor.org/stable/23596835![]

11

22

33

44

55

66

77

88

11

22

33

44

55

66

11

22

33

44

https://pysoundfile.readthedocs.io/en/latest/
https://ffmpeg.org/
https://pypi.org/project/pytz/
https://doi.org/10.1016/j.ecolind.2023.110027
https://doi.org/10.1016/j.ecolind.2020.106953
https://doi.org/10.1038/s41586-020-2649-2
https://astral.readthedocs.io/en/latest/
https://doi.org/10.1016/j.ecoinf.2021.101242
http://sox.sourceforge.net/
https://doi.org/10.3390/s19030553
https://doi.org/10.1111/2041-210X.13660
http://www.sonobat.com/
https://github.com/QutEcoacoustics/emu
http://www.jstor.org/stable/23596835!%5B%5D

